Warning or Car Direction Indicator

Technology: Bipolar

Features

- Can be protected against damage or interference with a minimum of external circuitry
- Temperature and voltage compensated frequency
- Warning indication of lamp failure by means of frequency doubling
- Voltage dependence of the car indicator lamps also compensated for lamp failure
- Relay output with high current carrying capacity and low saturation voltage
- Overvoltage protected relay output
- Load-dump protection
- Lamp load $\geq 1 \mathrm{~W}$
- HF protected
- Control input

Case

8 pin dual inline plastic (U 644 B)
8 pin SO plastic (U 644 B-FP)

Figure 1 Application circuit as a car flasher with control input Resistor $\mathrm{R}_{1}, \mathrm{R}_{2}$ and $\mathrm{R}_{\mathrm{t}}: 1 / 4$ Watt
R_{1} for protection against continuous reversed polarity: 1 Watt

U 644 B / U 644 B-FP

Figure 2 Application circuit as a car flasher without control input
Resistor $\mathrm{R}_{1}, \mathrm{R}_{2}$ and $\mathrm{R}_{\mathrm{t}}: 1 / 4$ Watt
R_{1} for protection against continuous reversed polarity: 1 Watt

Application Note

In Figure 1, the control input (Pin 6) is used to enable or disable U 644 B.

If ignition is off, the current consumption is less than $50 \mu \mathrm{~A}$.

In Figure 2, Pin 6 is bridged to Pin 2, so U 644 B works like U 6043 B. Note that the resistor values of R_{1} and R_{2} are different from the U 6043 B - application circuit!

Pin Configuration

Pin	Function
1	IC ground
2	Supply voltage V_{S}
3	Relay driver
4	C_{t} oscillator
5	R_{t} oscillator
6	Control input
7	Lamp failure detection
8	Start input (49a)

Circuit Description

The application circuit shows the operation of this IC as a car direction indicator signal generator. The flashing frequency is determined by the components R_{t} and C_{t}, and the frequency can be calculated from

$$
\begin{equation*}
\mathrm{f}_{1} \sim \frac{1}{\mathrm{R}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{t}} \cdot 1.5} \tag{Hz}
\end{equation*}
$$

where f_{1} is the frequency in normal flashing operation (basic frequency). The control frequency f_{2} is typically 2.2 times the value of f_{1} and is the frequency in the case of lamp failure. The bright periods for f_{1} and f_{2} are internally set in the IC and are 50% for f_{1} and 40% for f_{2}.

The resistor R_{1} and R_{2} are needed to protect the circuit against possible damage. An integrated protection circuit together with these external resistors, limits the impulse current in the integrated circuit. Connecting the circuit with the wrong polarity leads to current limitation by R_{1}, R_{2} and the resistance of the coil of the relay. A current of about 60 mA would then flow over R_{1} so that for unlimited protection against continuous reversal of the polarity of the supply, a 1.0 W resistor would be necessary. A short circuit
between indicator lamp (49a) and ground (31) can give rise to a voltage drop of about 4 V across the measuring resistance R_{3}, the circuit would not be damaged by such a short circuit.

The use of this application circuit ensures damage and interference protection consistent with VDE 0839 and load dump. The recognition point for lamp failure can be calculated from the control signal threshold, typically 49 mV with $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$. With a measuring resistance of $\mathrm{R}_{3}=18$ $\mathrm{m} \Omega$ the frequency changeover is reached at a lamp load of $21 \mathrm{~W}+11.4 \mathrm{~W}$. The variation of the control signal threshold with supply voltage takes into account the PTC-characteristic of filament lamps.
A resistance $R_{p}=5.6 \mathrm{k} \Omega$ between lamp indicator (49a) and ground (31) ensures that if the direction indicator switch is open, then the flashing generator is in the stand-by mode. Then the voltage at pin 8 is between the threshold of the comparators K2 and K3. During the bright phase the voltage at pin 8 must be above the K2-threshold, during dark phase below the K3-threshold. Defined operation is ensured with a lamp load of $\mathrm{P}_{\mathrm{L}} \geq 1$ Watt.

Absolute Maximum Ratings

Reference point Pin 1

Parameters		Symbol	Value	Unit
Supply voltage	Pin 2	V_{S}	18	V
Surge forward current $\begin{aligned} & \mathrm{t}_{\mathrm{p}}=0.1 \mathrm{~ms} \\ & \mathrm{t}_{\mathrm{P}}=300 \mathrm{~ms} \\ & \mathrm{t}_{\mathrm{P}}=300 \mathrm{~ms} \end{aligned}$	Pin 2 Pin 2 Pin 8	$\begin{aligned} & \mathrm{I}_{\mathrm{FSM}} \\ & \mathrm{I}_{\mathrm{FSM}} \\ & \mathrm{I}_{\mathrm{FSM}} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 50 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~mA} \end{gathered}$
Output current	Pin 3	I_{O}	0.3	A
Power dissipation $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=120^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{amb}}=105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{amb}}=60^{\circ}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { DIP } 8 \\ & \text { SO } 8 \\ & \text { DIP } 8 \\ & \text { SO } 8 \end{aligned}$	$P_{\text {tot }}$ $\mathrm{P}_{\text {tot }}$ $\mathrm{P}_{\text {tot }}$ $\mathrm{P}_{\text {tot }}$	$\begin{aligned} & 230 \\ & 300 \\ & 690 \\ & 560 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \\ \mathrm{~mW} \\ \mathrm{~mW} \end{gathered}$
Junction temperature		T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature range	$\begin{aligned} & \hline \text { DIP } 8 \\ & \text { SO } 8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{amb}} \\ & \mathrm{~T}_{\mathrm{amb}} \end{aligned}$	$\begin{aligned} & -40 \ldots+120 \\ & -40 \ldots+105 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	$-65 \ldots+150$	${ }^{\circ} \mathrm{C}$

U 644 B / U 644 B-FP
TELEFUNKEN Semiconductors

Electrical Characteristics

Typical values under normal operation in application circuit Figure $1, \mathrm{~V}_{\mathrm{S}}(+49, \operatorname{Pin} 2)=12 \mathrm{~V}$.
Reference point ground $(-31), \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameters	Test Cond	/ Pin	Symbol	Min	Typ	Max	Unit
Supply voltage range		Pin 2	$\mathrm{V}_{\mathrm{S}}(+49)$		$8 . .18$		V
Supply current, dark phase or stand-by		Pin 2	I_{S}		5	7	mA
Supply current, bright phase		Pin 2	$\mathrm{I}_{\text {S }}$		6	10	mA
Relay output, saturation voltage	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA}$	Pin 3	V_{O}			1.3	V
Relay output reverse current		Pin 3	I_{O}			0.1	mA
Relay coil resistance			R_{L}	60			Ω
Relay output overvoltage detection (Relay disabled)				19.0	20.2	22.5	V
Start delay (first bright phase)			$\mathrm{t}_{\text {on }}$			10	ms
Frequency determining resistor			R_{t}	6.8		510	$\mathrm{k} \Omega$
Frequency determining capacitor			C_{t}			47	$\mu \mathrm{F}$
Frequency tolerance (normal flashing, basic frequency f_{1} not including the tolerance of the external components R_{t} and C_{t})			$\Delta \mathrm{f}_{1}$	-6.5		+ 6.5	\%
Bright period (basic frequency f_{1})			$\Delta \mathrm{f}_{1}$	45		55	\%
Bright period (control frequency f_{2})			Δf_{2}	35		45	\%
Frequency increase (lamp failure)			f_{2}	$2.1 \cdot \mathrm{f}_{1}$		$2.4 \cdot{ }^{\text {f }}$	
Control signal threshold	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{s}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Pin } 7 \\ & \text { Pin } 7 \\ & \text { Pin } 7 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R} 3} \\ & \mathrm{~V}_{\mathrm{R} 3} \\ & \mathrm{~V}_{\mathrm{R} 3} \end{aligned}$	$\begin{gathered} 53 \\ 40.5 \\ 47.5 \end{gathered}$	$\begin{gathered} 57 \\ 43.6 \\ 51 \end{gathered}$	$\begin{gathered} 61 \\ 46.6 \\ 54.5 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Resistance between 49a to ground for stand-by			R_{P}		2	5.6	$\mathrm{k} \Omega$
Lamp load			P_{L}	1			W

TELEFUNKEN Semiconductors

Dimensions in mm

U 644 B / U 644 B-FP

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements and
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes without further notice to improve technical design.
Parameters can vary in different applications. All operating parameters must be validated for each customer application by customer. Should Buyer use TEMIC products for any unintended or unauthorized application, Buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

